Selects a probability distribution by minimizing the absolute distance between the theoretical L-kurtosis (\(\tau_4\)) and the sample L-kurtosis (\(t_4\)). Only supports 3-parameter distributions.
For NS-FFA: To select a distribution for a nonstationary model, include the
observation years (ns_years
) and the nonstationary model structure
(ns_structure
). Then, this method will detrend the original, nonstationary data
internally using the data_decomposition()
function prior to distribution selection.
Arguments
- data
Numeric vector of observed annual maximum series values. Must be strictly positive, finite, and not missing.
- ns_years
For NS-FFA only: Numeric vector of observation years corresponding to
data
. Must be the same length asdata
and strictly increasing.- ns_structure
For NS-FFA only: Named list indicating which distribution parameters are modeled as nonstationary. Must contain two logical scalars:
location
: IfTRUE
, the location parameter has a linear temporal trend.scale
: IfTRUE
, the scale parameter has a linear temporal trend.
Value
A list with the results of distribution selection:
method
:"L-kurtosis"
.decomposed_data
: The detrended dataset used to compute the L-moments. For S-FFA, this is thedata
argument. For NS-FFA, it is output ofdata_decomposition()
.metrics
: A list of L-kurtosis metrics for each distribution.recommendation
: Name of the distribution with the smallest L-kurtosis metric.
Details
This method computes the distance between the sample and theoretical L-kurtosis
values at a fixed L-skewness. For three parameter distributions, the shape parameter
that best replicates the sample L-skewness is determined using stats::optim()
.
References
Hosking, J.R.M. & Wallis, J.R., 1997. Regional frequency analysis: an approach based on L-Moments. Cambridge University Press, New York, USA.
Examples
data <- rnorm(n = 100, mean = 100, sd = 10)
select_lkurtosis(data)
#> $method
#> [1] "L-kurtosis"
#>
#> $decomposed_data
#> [1] 93.60352 110.40346 101.88798 89.91239 95.76346 96.28633 92.88214
#> [8] 107.66761 100.24811 91.11662 106.52933 103.43808 100.93860 110.27809
#> [15] 98.62926 102.08267 98.57140 102.35075 103.47996 83.75346 104.88698
#> [22] 92.63333 75.05650 88.16380 97.45606 90.25658 99.95407 126.05796
#> [29] 105.80371 112.20856 108.26051 87.51531 112.79890 101.79532 100.69774
#> [36] 94.59874 92.52886 106.65356 102.37895 78.83040 113.09512 101.76962
#> [43] 87.93563 100.03565 116.09386 108.88120 100.53488 93.86536 84.78745
#> [50] 104.43879 119.64609 88.08352 102.16198 101.59475 108.50008 103.25873
#> [57] 74.92009 114.19124 98.33760 89.44035 102.32344 83.51807 114.32718
#> [64] 104.70174 118.28867 101.53764 73.90265 98.52786 99.60387 114.10128
#> [71] 94.80521 77.24338 118.15420 96.81166 120.67107 91.90085 109.02063
#> [78] 111.29125 101.25185 101.97204 105.04875 101.59453 107.52622 95.95371
#> [85] 105.78080 102.50401 99.46820 96.22555 104.76594 89.81868 112.29107
#> [92] 96.09028 102.93663 75.41348 96.22050 103.39956 109.32393 100.77930
#> [99] 98.63497 95.30955
#>
#> $metrics
#> $metrics$GEV
#> [1] 0.08524815
#>
#> $metrics$GLO
#> [1] 0.0183023
#>
#> $metrics$GNO
#> [1] 0.0625777
#>
#> $metrics$PE3
#> [1] 0.06473996
#>
#> $metrics$LP3
#> [1] 0.07141426
#>
#> $metrics$WEI
#> [1] 0.07021915
#>
#>
#> $recommendation
#> [1] "GLO"
#>