Selects a distribution from a set of candidate distributions by minimizing the Euclidean distance between the theoretical L-moment ratios \((\tau_3, \tau_4)\) and the sample L-moment ratios \((t_3, t_4)\).
For NS-FFA: To select a distribution for a nonstationary model, include the
observation years (ns_years
) and the nonstationary model structure
(ns_structure
). Then, this method will detrend the original, nonstationary data
internally using the data_decomposition()
function prior to distribution selection.
Arguments
- data
Numeric vector of observed annual maximum series values. Must be strictly positive, finite, and not missing.
- ns_years
For NS-FFA only: Numeric vector of observation years corresponding to
data
. Must be the same length asdata
and strictly increasing.- ns_structure
For NS-FFA only: Named list indicating which distribution parameters are modeled as nonstationary. Must contain two logical scalars:
location
: IfTRUE
, the location parameter has a linear temporal trend.scale
: IfTRUE
, the scale parameter has a linear temporal trend.
Value
A list with the results of distribution selection:
method
:"L-distance"
.decomposed_data
: The detrended dataset used to compute the L-moments. For S-FFA, this is thedata
argument. For NS-FFA, it is output ofdata_decomposition()
.metrics
: A list of L-distance metrics for each candidate distribution.recommendation
: The name of the distribution with the smallest L-distance.
Details
For each candidate distribution, this method computes the Euclidean distance between sample L-moment ratios (\(\tau_3\), \(\tau_4\)) and the closest point on the theoretical distribution's L-moment curve. For two-parameter distributions (Gumbel, Normal, Log-Normal), the theoretical L-moment ratios are compared directly with the sample L-moment ratios. The distribution with the minimum distance is selected. If a distribution is fit to log-transformed data (Log-Normal or Log-Pearson Type III), the L-moment ratios for the log-transformed sample are used instead.
References
Hosking, J.R.M. & Wallis, J.R., 1997. Regional frequency analysis: an approach based on L-Moments. Cambridge University Press, New York, USA.
Examples
data <- rnorm(n = 100, mean = 100, sd = 10)
select_ldistance(data)
#> $method
#> [1] "L-distance"
#>
#> $decomposed_data
#> [1] 107.09347 111.33380 91.63655 113.57553 88.15262 96.71245 109.96926
#> [8] 95.28064 94.79393 105.04564 89.21866 101.68685 101.67021 110.18532
#> [15] 97.52121 106.62934 92.00706 103.19359 112.05010 106.43435 111.62498
#> [22] 90.75030 87.44010 101.17884 112.19709 94.26940 88.09143 109.28352
#> [29] 102.92654 84.25709 92.86221 95.25211 104.71987 86.07771 105.88744
#> [36] 96.38812 98.28475 111.34012 85.61424 83.39046 95.75677 105.09897
#> [43] 97.78265 96.43884 95.15888 101.54152 108.00823 92.30195 106.54658
#> [50] 123.52926 103.63681 104.45167 104.92731 97.62798 117.74801 105.73499
#> [57] 87.33038 106.28960 103.58367 102.87981 110.55310 99.95650 109.47916
#> [64] 78.16191 100.11074 96.80422 110.29001 113.98892 101.32930 104.03966
#> [71] 79.54288 116.02153 108.25178 105.00270 95.39139 100.04212 90.72727
#> [78] 116.31053 93.67948 88.95316 107.74635 101.10127 102.14657 109.01056
#> [85] 103.25412 93.44450 96.38329 100.96132 102.06288 106.86254 101.29751
#> [92] 101.65906 103.89413 82.21160 96.41316 88.69358 84.49661 95.29414
#> [99] 110.21652 95.51219
#>
#> $metrics
#> $metrics$GUM
#> [1] 0.2284316
#>
#> $metrics$NOR
#> [1] 0.05652286
#>
#> $metrics$LNO
#> [1] 0.09746302
#>
#> $metrics$GEV
#> [1] 0.003714425
#>
#> $metrics$GLO
#> [1] 0.06164513
#>
#> $metrics$GNO
#> [1] 0.01760647
#>
#> $metrics$PE3
#> [1] 0.01621452
#>
#> $metrics$LP3
#> [1] 0.01282008
#>
#> $metrics$WEI
#> [1] 0.008401841
#>
#>
#> $recommendation
#> [1] "GEV"
#>