Skip to contents

Performs a bootstrapped version of the Mann-Kendall trend test to adjust for serial correlation in annual maximum series data. The BBMK test uses Spearman’s serial correlation test to identify the least insignificant lag, then applies a shuffling procedure to obtain the empirical p-value and confidence bounds for the Mann-Kendall test statistic.

Usage

eda_bbmk_test(data, alpha = 0.05, samples = 10000L)

Arguments

data

Numeric vector of observed annual maximum series values. Must be strictly positive, finite, and not missing.

alpha

Numeric scalar in \([0.01, 0.1]\). The significance level for confidence intervals or hypothesis tests. Default is 0.05.

samples

Integer scalar. The number of bootstrap samples. Default is 10000.

Value

A list containing the test results, including:

  • data: The data argument.

  • alpha: The significance level as specified in the alpha argument.

  • null_hypothesis: A string describing the null hypothesis.

  • alternative_hypothesis: A string describing the alternative hypothesis.

  • statistic: The Mann-Kendall S-statistic computed on the original series.

  • bootstrap: Vector of bootstrapped Mann-Kendall test statistics.

  • p_value: Empirical two-sided p-value derived from the bootstrap distribution.

  • bounds: Empirical confidence interval bounds from the bootstrap distribution.

  • reject: If TRUE, the null hypothesis was rejected at significance alpha.

Details

The block size for reshuffling is equal to the least_lag as estimated in eda_spearman_test(). Bootstrap samples are generated by resampling blocks of the original data without replacement. This procedure effectively removes serial correlation from the data.

References

Bayazit, M., 2015. Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review. Environmental Processes 2 (3), 527–542. doi:10.1007/s40710-015-0081-7

Khaliq, M.N., Ouarda, T.B.M.J., Gachon, P., Sushama, L., St-Hilaire, A., 2009. Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers. Journal Hydrolology 368 (1–4), 117–130. doi:10.1016/j.jhydrol.2009.01.035

Sonali, P., Nagesh Kumar, D., 2013. Review of trend detection methods and their application to detect temperature changes in India. Journal Hydrology 476, 212–227. doi:10.1016/j.jhydrol.2012.10.034

Examples

data <- rnorm(n = 100, mean = 100, sd = 10)
eda_bbmk_test(data, samples = 1000L)
#> $data
#>   [1] 105.58514 104.15406  85.47700 109.41206  96.61064  99.24426 100.40204
#>   [8] 101.24301  90.01567 112.33390 103.40424  95.27298 107.08753  84.71041
#>  [15] 102.37425  86.87186 107.47029  84.37482 100.71053  93.60465  91.54804
#>  [22] 106.75245 111.53376  83.13495  90.97185 113.17634 111.00190 112.03768
#>  [29]  85.68729 113.82911 100.03126  99.22113 104.41428 101.28923  91.69786
#>  [36]  94.96407  88.06359  92.48277 114.55841  91.71396 102.89774  95.19947
#>  [43]  93.95171 114.60110 101.49679  85.66679  99.89697  97.87764  90.93660
#>  [50]  78.97848 118.93360  90.31874  98.97397 102.39960 100.60899  78.22424
#>  [57]  98.82140 101.12295 100.07886 118.77744 121.58757 107.09715 107.66983
#>  [64]  96.91789 110.12002  90.80948 105.63380 103.22483 103.66674 111.29835
#>  [71]  90.58502 102.17838 114.15412  96.16267  98.25914  97.78255  89.90471
#>  [78] 104.80725 116.04407  84.84975  85.83976 108.76777 106.24132 121.12277
#>  [85]  96.43876  89.35536 110.77117 111.81576 101.98392  95.99595 106.16154
#>  [92] 119.74157 118.84662  84.11379  94.60077  88.30539 105.59106  81.80653
#>  [99] 103.93344 100.42134
#> 
#> $alpha
#> [1] 0.05
#> 
#> $null_hypothesis
#> [1] "There is no monotonic trend in the mean of the data."
#> 
#> $alternative_hypothesis
#> [1] "There is a monotonic trend in the mean of the data."
#> 
#> $statistic
#> [1] 244
#> 
#> $bootstrap
#>    [1]   756  -346  -912   498   760  -222  -116   430  -164  -476  -162  -224
#>   [13]   120  -324   -20   508  -824  -188  -374   220  -444   406    12   162
#>   [25]   260  -400   382    38  -368   110  -278   168   418   -52   -28   164
#>   [37]  -408   800   336   -28   412   318  -664   136   -52   834   138   614
#>   [49]   134  -220   290   376  -390  -214  -664   102   274   -26  -230  -378
#>   [61]   236  -238    48   132   450   -28     8    34  -352  -522   140   526
#>   [73]  -220  -166  -322    76   418  -704  -198  -230   592   408  -262  -330
#>   [85]   108   -32  -304   908  -130    58  -516    80   132   554  -248   194
#>   [97]  -172   -10   184  -178   -62  -156   300   -94  -176   -22   -90  -134
#>  [109]  -316  -174  -350   -16   170  -372    22  -386  -422   186   252    40
#>  [121]   -34   294  -372  -178  -180  -242  -334   172   160  -428   434   738
#>  [133]   288   -52   158   -76   -50   -86  -544  -954   126  -130  -496   254
#>  [145]    98  -364   192   482   -90   100  -178  -486  -512    52  -120  -212
#>  [157]   -38   372    14  -448  -406  -470   -40   166   380  -102   592  -120
#>  [169]    38   198   322   434   266   -72  -154    92   152  -740   -46  -800
#>  [181]   104  -326  -456    62   -86   220  -106   602  -456    16  -228  -594
#>  [193]  -482  -604   -52  -914   246   176  -192  -554  -140   -30  -226  -192
#>  [205]   -38   130     0  -122   486    52   196   712   354   612  -372   214
#>  [217]  -632   290   140   226   212    -6    -6   -12  -128   370    28   174
#>  [229]    12   184   232   408  -272  -250  -248    36  -332   186  -260  -130
#>  [241]   102   -56  -984   332   -96    16   328   224  -214  -190  -678   312
#>  [253]  -234   -30  -658  -408   138   586  -454   -16   258   -92   124  -280
#>  [265]  -130  -256   206  -572   170   102  -332   464   316   -12   -18    38
#>  [277]  -642  -164   -72   280     2  -156   202   278  -180  1074  -176    -4
#>  [289]  -468   106   158  -208    16  -528   232   136  -180     4  -180   428
#>  [301]  -262  -428  -552    26   410  -556  -104    50   -90  -204  -158  -286
#>  [313]  -206  -222   -16   262   312  -326   120  -208   424    66  -492   370
#>  [325]   610   238  -826   128  -158   526   158   200  -626  -132   -28  -516
#>  [337]  -216   730  -108   308  -106   158   -18  -202  -330  -226   234  -260
#>  [349]   120  -310  -206  -778    72    72   174   -80   226  -156  -510  -468
#>  [361]   518  -116  -618   134    10   -94   288    46  -248   -74   270   -76
#>  [373]  -536   800  -242   -30  -178   426   -68  -166   240   500   366  -266
#>  [385]   594  -108    62  -302  -454   156   382   -64   186   -16  -214  -116
#>  [397]  -254  -118  -282   -42  -296   534   -34  -796  -422    36   270   -88
#>  [409]   -72   116    60  -512   120  -126   240  -348   114   -40  -168    26
#>  [421]    92  -158  -122   498   312  -294   770   198   500  -352    90   192
#>  [433]    86  -168  -372    96   180   240  -584  -806  -214   244  -364  -576
#>  [445]   264  -422   266  -450    18   -98  -338   368  -184  -550   574  -290
#>  [457]   516  -108  -354  -108  -102  -396   350  -136   122   618    68  -300
#>  [469]  -166  -178   206  -360  -338   142    44     8    84   -62  -426  -590
#>  [481]  -340   496  -158     4   192    40   162   234   -68  -428   280   108
#>  [493]   308  -426  -314   -84  -172   180  -370    88  -110   350   368   430
#>  [505]  -720   454   922  -182   198  -144    14   -48  -212   578   198   308
#>  [517]  -584   470   510  -136  -448  -130  -284   118   424  -226   332   774
#>  [529]  -204  -178    86  -216   -92    10  -152  -132    68   -40  -706  -234
#>  [541]   144   198   642   104   490  -160   710  -358   494  -460  -108   238
#>  [553]    22  -104  -472  -778   220  -832  -542  -122  -286  -234   308   -68
#>  [565]    82   130     4  -236    14  -220   180   116  -132   436   192  -280
#>  [577]  -176    18   -52  -318   244   438   224   -58   -92    44  -392   122
#>  [589]   152   768   254   -92  -112  -446   252   284   276   406   120  -352
#>  [601]   220  -186   348  -482  -192   148    88   408  -140   304  -102   316
#>  [613]  -212   536  -720  -482  -108  -236  -220  -304  -242   180   -64  -176
#>  [625]  -510    66   -30   262  -416   490   252    84   334   286  -144   152
#>  [637]  -134   610  -368  -356    18   276  -166   -96  -384  -738    94  -240
#>  [649]   456   -20  -240  -562  -308  -720  -438  -272  -510  -486    72  -182
#>  [661]    12  -110  -108   166    90  -196   -22  -294   -20  -602   126    50
#>  [673]  -280    40   458   -92   166    26   -24   106  -330   370  -384  -140
#>  [685]   -34  -184   246  -358   216  -424    40   -74  -366  -676   240  -278
#>  [697]    78   376  -124    42   562    86  -100   -20    52   -56  -160   -18
#>  [709]   222    92   414   -62   -38   182  -274  -124  -526   104   412   390
#>  [721]   314    20  -386  -306  -470  -396    36  -482  -216    22   302  -430
#>  [733]   812     2  -290   636   152  -118   302   824   -46   384  -410  -350
#>  [745]  -344   630   -74  -378   448   624   392   240  -460  -246    20  -136
#>  [757]   244  -800  -228  -234   152   168   756  -252   596  -276  -892  -428
#>  [769]   150  -198    28   548   836  -378   496  -194   346    74    22  -296
#>  [781]   602  -240  -426  -556     0  -144  -292  -134  -252  -100   368  -204
#>  [793]  -552  -244   -76   128  -314  -706  -274    82   -16  -474   252   120
#>  [805]  -214  -154  -298  -526   224  -292   224   128  -454  -270   328  -126
#>  [817]   178  -364    68   926    50   120    98   452   478    58  -108   344
#>  [829]    80  -468  -258  -114  -274   404    70  -330  -170  -410   364  -738
#>  [841]   286    -8  -134   -74   -26   294  -312   152   -10   372  -374   722
#>  [853]   420  -134   -20   108   546   288  -284    46   -34  -122   102   -20
#>  [865]   -74  -480   214   488   316   -76 -1088   338  -416   480   -66  -284
#>  [877]  -376   -68   568   224  -434   -60    28  -226   584     0     0   348
#>  [889]   166   -34   -76   168   618  -362  -164    62   -38  -272   320  -246
#>  [901]   278  -594  -400   148  -280  -456  -268   352  -142  -312   398   -94
#>  [913]  -498   -68  -128  -384   456  -152   190  -504    44  -302   426  -324
#>  [925]    14  -158  -288   390   -60    42   624   138    34  -176   112   458
#>  [937]   -90    70    16   102  -162   530  -252   294  -318   240   722  -326
#>  [949]   206  -280   204   382   764   326  -558  -144  -316  -166   410   656
#>  [961]   114  -438  -148   482  -144   444  -190   326  -398   290  -222   414
#>  [973]  -534  -212   366   -98  -216  -654   250   842  -138    36  -168   304
#>  [985]   322  -276   320  -196   218  -184   302   170   560    38   -12   148
#>  [997]  -384  -160   642   402
#> 
#> $p_value
#> [1] 0.432
#> 
#> $bounds
#>    2.5%   97.5% 
#> -676.05  642.35 
#> 
#> $reject
#> [1] FALSE
#>