Performs the Mann–Kendall trend test on a numeric vector to detect the presence of an increasing or decreasing monotonic trend over time. The test is nonparametric and accounts for tied observations in the data. The null hypothesis assumes there is no monotonic trend.
Value
A list containing the test results, including:
data
: Thedata
argument.alpha
: The significance level as specified in thealpha
argument.null_hypothesis
: A string describing the null hypothesis.alternative_hypothesis
: A string describing the alternative hypothesis.statistic
: The Mann–Kendall test statistic.variance
: The variance of the test statistic under the null hypothesis.p_value
: The p-value associated with the two-sided hypothesis test.reject
: Logical. IfTRUE
, the null hypothesis is rejected atalpha
.
Details
The test statistic \(S\) is the sum over all pairs \(i < j\) of the sign of the difference \(x_j - x_i\). Ties are explicitly accounted for when calculating the variance of \(S\), using grouped frequencies of tied observations. The test statistic \(Z\) is then computed based on the sign and magnitude of \(S\), and the p-value is derived from the standard normal distribution.
References
Kendall, M. (1975). Rank Correlation Methods. Griffin, London, 202 pp.
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3): 245-25
Examples
data <- rnorm(n = 100, mean = 100, sd = 10)
eda_mk_test(data)
#> $data
#> [1] 107.34841 99.84156 88.23479 97.79369 115.64516 111.22041 104.63076
#> [8] 106.33357 95.12631 89.60322 75.68793 102.59373 96.36258 110.89977
#> [15] 107.88251 105.74549 98.24206 100.42963 101.62222 97.24310 99.82175
#> [22] 102.24486 83.05105 98.18668 108.51155 105.74684 107.53031 92.67545
#> [29] 85.09204 98.48259 96.75074 111.55520 98.43460 110.63326 102.35489
#> [36] 120.92595 83.07251 89.94641 116.74478 95.62255 113.27158 114.27544
#> [43] 84.60421 111.82677 106.54959 113.19297 95.98798 94.25990 81.96696
#> [50] 100.44151 100.24345 111.49112 97.26690 94.35158 107.04075 105.20372
#> [57] 107.43372 101.73053 109.10044 93.58330 88.93986 92.14111 105.30740
#> [64] 112.18120 84.70178 105.51114 94.83542 96.01779 103.24808 107.26851
#> [71] 96.57706 94.41080 96.02413 99.10775 110.40952 102.40919 96.55350
#> [78] 91.02249 98.98338 92.13937 90.92910 114.08476 102.50388 94.02291
#> [85] 94.74065 94.91006 92.55806 91.13979 118.16085 83.30854 111.22617
#> [92] 107.17357 96.59280 99.14638 103.38835 96.73917 101.31666 98.82788
#> [99] 108.98828 110.77115
#>
#> $alpha
#> [1] 0.05
#>
#> $null_hypothesis
#> [1] "There is no monotonic trend in the mean of the data."
#>
#> $alternative_hypothesis
#> [1] "There is a monotonic trend in the mean of the data."
#>
#> $statistic
#> [1] -202
#>
#> $variance
#> [1] 112750
#>
#> $p_value
#> [1] 0.5494387
#>
#> $reject
#> [1] FALSE
#>