Regula-Falsi Generalized Profile Likelihood Uncertainty Quantification
Source:R/uncertainty-rfgpl.R
uncertainty_rfgpl.RdCalculates return level estimates and confidence intervals at specified return periods (defaults to 2, 5, 10, 20, 50, and 100 years) using the regula-falsi generalized profile likelihood root‐finding method for the GEV distribution.
For NS-FFA: To perform uncertainty quantification for a nonstationary model,
include the observation years (ns_years), the nonstationary model structure
(ns_structure), and a list of years at which to compute the return level estimates
and confidence intervals (ns_slices).
Usage
uncertainty_rfgpl(
data,
prior,
ns_years = NULL,
ns_structure = NULL,
ns_slices = NULL,
alpha = 0.05,
periods = c(2, 5, 10, 20, 50, 100),
tolerance = 0.01
)Arguments
- data
Numeric vector of observed annual maximum series values. Must be strictly positive, finite, and not missing.
- prior
Numeric vector of length 2. Specifies the parameters of the Beta prior for the shape parameter \(\kappa\).
- ns_years
For NS-FFA only: Numeric vector of observation years corresponding to
data. Must be the same length asdataand strictly increasing.- ns_structure
For NS-FFA only: Named list indicating which distribution parameters are modeled as nonstationary. Must contain two logical scalars:
location: IfTRUE, the location parameter has a linear temporal trend.scale: IfTRUE, the scale parameter has a linear temporal trend.
- ns_slices
For NS-FFA only: Numeric vector specifying the years at which to evaluate the return levels confidence intervals of a nonstationary probability distribution.
ns_slicesdo not have to be elements of thens_yearsargument.- alpha
Numeric scalar in \([0.01, 0.1]\). The significance level for confidence intervals or hypothesis tests. Default is 0.05.
- periods
Numeric vector used to set the return periods for FFA. All entries must be greater than or equal to 1.
- tolerance
The log-likelihood tolerance for Regula-Falsi convergence (default is 0.01).
Value
A list containing the following six items:
method: "RFGPL"distribution: "GEV"params: The fitted parameters.ns_structure: Thens_structureargument, if given.ns_slices: Thens_slicesargument, if given.ci: A dataframe containing confidence intervals (S-FFA only)ci_list: A list of dataframes containing confidence intervals (NS-FFA only).
The dataframe(s) in ci and ci_list have four columns:
estimates: Estimated quantiles for each return period.lower: Lower bound of the confidence interval for each return period.upper: Upper bound of the confidence interval for each return period.periods: Theperiodsargument.
Details
Uses
fit_gmle()to obtain the maximum generalized log‐likelihood.Defines an objective function \(f(y_p, p)\) by reparameterizing the generalized log-likelihood.
Iteratively brackets the root by rescaling initial guesses by 0.05 until \(f(y_p, p)\) changes sign.
Uses the regula-falsi method to solve \(f(y_p, p) = 0\) for each return period probability.
Returns lower and upper confidence bounds at significance level
alpha.
Note
RFGPL uncertainty quantification can be numerically unstable for some datasets.
If this function encounters an issue, it will return an error and recommend
uncertainty_bootstrap() instead.
References
Vidrio-Sahagún, C.T., He, J. Enhanced profile likelihood method for the nonstationary hydrological frequency analysis, Advances in Water Resources 161, 10451 (2022). doi:10.1016/j.advwatres.2022.104151
Vidrio-Sahagún, C.T., He, J. & Pietroniro, A. Multi-distribution regula-falsi profile likelihood method for nonstationary hydrological frequency analysis. Stochastic Environmental Research and Risk Assessment 38, 843–867 (2024). doi:10.1007/s00477-023-02603-0
Examples
data <- rnorm(n = 100, mean = 100, sd = 10)
uncertainty_rfgpl(data, c(6, 9))
#> $method
#> [1] "RFGPL"
#>
#> $distribution
#> [1] "GEV"
#>
#> $params
#> [1] 94.8057579 12.7161970 0.1017774
#>
#> $ns_structure
#> NULL
#>
#> $ns_slices
#> NULL
#>
#> $ci
#> periods estimates lower upper
#> 1 2 99.55443 96.63859 102.7040
#> 2 5 115.41217 111.00705 120.5315
#> 3 10 126.96414 121.19155 133.8164
#> 4 20 138.90570 131.57452 147.7554
#> 5 50 155.72063 145.92495 167.6549
#> 6 100 169.40853 157.41913 184.1089
#>