L-Moments Parameter Estimation for the Kappa Distribution
Source:R/fit-lmoments-kappa.R
fit_lmoments_kappa.Rd
This function estimates the parameters of the four-parameter Kappa distribution using the method of L-moments. Since no closed-form solution for the parameters in terms of the L-moments is known, the parameters are estimated numerically using Newton-Raphson iteration.
Value
A list containing the results of parameter estimation:
data
: Thedata
argument.distribution
:"KAP"
.method
:"L-moments"
.params
: numeric vector of 4 parameters in the order location, scale, shape (2).
Details
First, the sample L-moments of the data are computed using utils_sample_lmoments()
.
Then, the stats::optim()
function is used to determine the parameters
by minimizing the euclidian distance between the sample and theoretical L-moment
ratios. The implementation of this routine is based on the deprecated homtest
package, formerly available at https://CRAN.R-project.org/package=homtest.
References
Hosking, J.R.M. & Wallis, J.R., 1997. Regional frequency analysis: an approach based on L-Moments. Cambridge University Press, New York, USA.
Examples
data <- rnorm(n = 100, mean = 100, sd = 10)
fit_lmoments_kappa(data)
#> $data
#> [1] 123.33102 129.98500 103.65176 96.13149 101.34976 127.82386 93.53035
#> [8] 98.14358 108.50758 92.69139 99.54006 109.46315 97.90904 95.27777
#> [15] 86.73009 85.38698 102.77775 112.91988 81.80512 94.74878 104.12961
#> [22] 86.15792 93.61056 90.67634 107.98288 93.72856 93.11586 114.25064
#> [29] 96.89832 85.21415 103.60718 118.07402 92.29831 116.30787 96.94046
#> [36] 88.75006 110.70093 106.80362 106.80181 78.45343 90.59212 113.49160
#> [43] 107.58402 105.77168 97.74529 92.92667 87.12961 97.34649 103.17341
#> [50] 114.52780 114.82291 84.09064 97.41627 80.09692 112.52924 84.14193
#> [57] 105.79051 92.79212 77.79175 94.06701 91.08944 102.43396 100.58815
#> [64] 112.30860 93.74515 100.52105 103.26004 107.44203 97.91168 119.01198
#> [71] 86.81093 95.02666 97.24043 78.01471 105.61307 103.25924 100.08636
#> [78] 111.09707 127.78743 87.27984 123.72900 97.47131 102.77547 87.47706
#> [85] 94.13426 96.19866 118.04711 105.96198 114.36962 115.87495 115.10900
#> [92] 108.80649 109.96885 111.57981 94.25167 87.46057 106.31133 109.05409
#> [99] 107.89903 114.14477
#>
#> $distribution
#> [1] "KAP"
#>
#> $method
#> [1] "L-moments"
#>
#> $params
#> [1] 95.4862623 13.2031444 0.3010056 0.1682830
#>