For S-FFA only: Estimates the parameters of a stationary probability model using the L-moments.
Value
A list containing the results of parameter estimation:
data
: Thedata
argument.distribution
: Thedistribution
argument.method
:"L-moments"
.params
: Numeric vector of estimated parameters.
Details
First, the sample L-moments of the data are computed using utils_sample_lmoments()
.
Then, formulas from Hosking (1997) are used to match the parameters to
the sample L-moments. The distributions "GNO"
, "PE3"
, and "LP3"
use a
rational approximation of the parameters since no closed-form expression is known.
References
Hosking, J.R.M. & Wallis, J.R., 1997. Regional frequency analysis: an approach based on L-Moments. Cambridge University Press, New York, USA.
Examples
data <- rnorm(n = 100, mean = 100, sd = 10)
fit_lmoments(data, "GUM")
#> $data
#> [1] 120.00224 103.56648 97.37379 91.94665 108.82779 82.40831 94.94096
#> [8] 90.56819 102.17673 92.68039 98.05867 99.08948 100.12524 115.71024
#> [15] 96.13517 111.17732 99.43153 90.23783 79.33490 104.12935 107.77373
#> [22] 107.74647 90.52324 104.05805 117.28742 90.72178 100.51341 95.89050
#> [29] 98.17972 102.58520 96.10162 100.28579 103.75042 102.36861 106.81857
#> [36] 99.87023 93.63866 103.16125 101.24585 114.56949 98.74122 108.01745
#> [43] 88.36622 92.08586 94.85833 91.17829 79.81302 106.05510 87.84966
#> [50] 94.28917 115.41705 104.91905 115.68214 86.67678 102.79631 92.60434
#> [57] 119.73140 117.24102 108.36749 103.51559 79.13414 101.57273 110.01306
#> [64] 94.95882 94.36551 98.49159 114.57832 82.77162 88.09108 95.81234
#> [71] 79.14392 84.59182 98.12339 97.29406 89.23987 112.77777 111.88500
#> [78] 101.40517 109.86976 97.46669 114.10414 99.06067 119.42181 104.18372
#> [85] 104.83997 95.58950 98.99218 96.55484 115.53452 106.02357 81.50147
#> [92] 96.43393 86.41441 94.61247 99.85326 107.39677 97.63858 114.23139
#> [99] 97.42237 87.23457
#>
#> $distribution
#> [1] "GUM"
#>
#> $method
#> [1] "L-moments"
#>
#> $params
#> [1] 95.076997 8.214399
#>