Generalized Log-Likelihood Functions for GEV Models
Source:R/utils-generalized-likelihood.R
utils_generalized_likelihood.Rd
Computes the generalized log-likelihood for stationary and nonstationary variants of the Generalized Extreme Value (GEV) distribution with a geophysical (Beta) prior distribution for the shape parameter (Martins and Stedinger, 2000).
For NS-FFA: To compute the generalized log-likelihood for a nonstationary
probability model, include the observation years (ns_years
) and the nonstationary
model structure (ns_structure
).
Arguments
- data
Numeric vector of observed annual maximum series values. Must be strictly positive, finite, and not missing.
- params
Numeric vector of distribution parameters, in the order (location, scale, shape). The length must be between 2 and 5, depending on the specified
distribution
andstructure
.- prior
Numeric vector of length 2. Specifies the parameters of the Beta prior for the shape parameter \(\kappa\).
- ns_years
For NS-FFA only: Numeric vector of observation years corresponding to
data
. Must be the same length asdata
and strictly increasing.- ns_structure
For NS-FFA only: Named list indicating which distribution parameters are modeled as nonstationary. Must contain two logical scalars:
location
: IfTRUE
, the location parameter has a linear temporal trend.scale
: IfTRUE
, the scale parameter has a linear temporal trend.
Details
The generalized log-likelihood is defined as sum of (1) the log-likelihood and (2) the log-density of the Beta prior with parameters \((p, q)\). The contribution of the prior is: $$\log \pi(\kappa) = (p-1) \log(0.5-\kappa) + (q-1) \log(0.5+\kappa) - \log (\beta(p, q))$$
References
El Adlouni, S., Ouarda, T.B.M.J., Zhang, X., Roy, R., Bobee, B., 2007. Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research 43 (3), 1–13. doi:10.1029/2005WR004545
Martins, E. S., and Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737–744. doi:10.1029/1999WR900330