Performs the KPSS unit root test on annual maximum series data. The null hypothesis is that the time series is trend-stationary with a linear deterministic trend and constant drift. The alternative hypothesis is that the time series has a unit root (also known as a stochastic trend).
Value
A list containing the test results, including:
data
: Thedata
argument.alpha
: The significance level as specified in thealpha
argument.null_hypothesis
: A string describing the null hypothesis.alternative_hypothesis
: A string describing the alternative hypothesis.statistic
: The KPSS test statistic.p_value
: The interpolated p-value. See the details for more information.reject
: IfTRUE
, the null hypothesis was rejected at significancealpha
.
Details
The implementation of the KPSS test is based on the aTSA package, which interpolates a significance table from Hobijn et al. (2004). Therefore, a result of \(p = 0.01\) implies that \(p \leq 0.01\) and a result of \(p = 0.10\) implies that \(p \geq 0.10\).
References
Hobijn, B., Franses, P.H. and Ooms, M. (2004), Generalizations of the KPSS-test for stationarity. Statistica Neerlandica, 58: 483-502.
Kwiatkowski, D.; Phillips, P. C. B.; Schmidt, P.; Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54 (1-3): 159-178.
Examples
data <- rnorm(n = 100, mean = 100, sd = 10)
eda_kpss_test(data)
#> $data
#> [1] 100.12387 98.95186 107.50888 97.77118 93.79625 113.14000 116.23621
#> [8] 88.10228 101.15881 116.18140 99.90063 92.66700 106.42069 108.95565
#> [15] 91.35165 100.35780 107.02140 110.87775 110.32847 112.30771 90.03516
#> [22] 90.82555 94.35715 103.97653 99.42904 94.74145 104.28256 89.53636
#> [29] 116.11412 90.69241 103.37862 105.22782 82.64148 109.39183 105.45024
#> [36] 84.75166 94.25823 111.23967 86.69933 97.37938 96.58283 111.08042
#> [43] 114.25324 99.55259 98.79250 106.57130 110.35033 88.61991 93.08293
#> [50] 100.83571 104.75665 102.37172 92.25124 103.24165 108.40478 116.61977
#> [57] 111.01600 108.00191 104.89789 108.15966 75.26442 89.19149 105.21227
#> [64] 86.71029 118.16608 102.27068 87.32682 106.03875 88.81822 103.22338
#> [71] 102.98355 114.61274 119.20752 89.24305 93.12479 106.15612 99.96043
#> [78] 100.60333 97.72133 91.09217 99.29099 87.82165 96.03174 116.78254
#> [85] 119.72330 98.41525 96.38403 92.93475 108.29597 92.21121 96.49941
#> [92] 94.03990 95.46888 87.32682 93.65167 106.19333 105.58708 99.05894
#> [99] 99.19472 100.19550
#>
#> $alpha
#> [1] 0.05
#>
#> $null_hypothesis
#> [1] "The time series is trend-stationary."
#>
#> $alternative_hypothesis
#> [1] "The time series has a unit root (stochastic trend)."
#>
#> $statistic
#> [1] 0.03306532
#>
#> $p_value
#> [1] 0.1
#>
#> $reject
#> [1] FALSE
#>